Recombinant Mouse LOX-1/OLR1 Protein, CF Summary
Product Specifications
Arg60-Ile363, with an N-terminal 10-His tag
Analysis
Product Datasheets
Carrier Free
CF stands for Carrier Free (CF). We typically add Bovine Serum Albumin (BSA) as a carrier protein to our recombinant proteins. Adding a carrier protein enhances protein stability, increases shelf-life, and allows the recombinant protein to be stored at a more dilute concentration. The carrier free version does not contain BSA.
In general, we advise purchasing the recombinant protein with BSA for use in cell or tissue culture, or as an ELISA standard. In contrast, the carrier free protein is recommended for applications, in which the presence of BSA could interfere.
1564-LX
Formulation | Lyophilized from a 0.2 μm filtered solution in PBS. |
Reconstitution | Reconstitute at 100 μg/mL in sterile PBS. |
Shipping | The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below. |
Stability & Storage: | Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
|
Reconstitution Calculator
Background: LOX-1/OLR1
Lectin-like oxidized low-density-lipoprotein receptor-1 (LOX-1), also known as oxidized low-density-lipoprotein receptor-1 (OLR-1), is a type II transmembrane receptor belonging to the C-type lectin family (1). It also belongs to the functionally defined scavenger receptor (SR) superfamily, whose members share the common ability to bind and internalize modified forms of Low Density Lipoproteins (LDL) (2 - 4). LOX-1 is the first member of the class E scavenger receptor subfamily (SR-E). It binds and supports the internalization of multiple structurally unrelated macromolecules including oxidized LDL, advanced glycation end products (AGE), activated platelets, bacteria, apoptotic or aged cells, and heat shock proteins (5 - 7). LOX-1 has also been implicated as an intestinal receptor involved in the transcytosis of pancreatic bile salt-dependent lipase (8). The mouse LOX-1 gene encodes a 363 amino acid (aa) residue protein with a short N-terminal intracellular domain, a transmembrane domain, triple repeats of an extracellular stalk/neck region followed by a C-type lectin-like domain (CTLD) (11). The CTLD, which is required for ligand recognition, contains the six conserved cysteine residues present in all C-type lectins, but lacks the Ca2+-binding residues found in classical C-type lectins. LOX-1 can be detected on activated endothelial cells, vascular smooth muscle cells, macrophages, intestinal cells and dendritic cells (6 - 8). The expression of LOX-1 is induced by proinflammatory or proatherogenic stimuli, as well as by oxidized LDL itself and hemodynamic or oxidative stress. LOX-1 exists on the cell surface as covalent homodimers, which can further associate into non-covalent-linked oligomers (9). Cell surface LOX-1 can also be cleaved by yet unidentified proteases to release the soluble LOX-1 extracellular domain (6). Binding and endocytosis of oxidized LDL by LOX-1 induces oxidative stress, activates NF kappa B, and upregulates the expression of monocyte chemoattractant protein-1 and matrix metalloproteases (5 - 9). LOX-1-dependent oxidized LDL uptake also induces apoptosis by inducing the expression of the pro-apoptotic Bax and downregulation of the anti-apoptotic Bcl-2 (10). Oxidized LDL plays a key role in the pathogenesis of atherosclerosis and endothelial dysfunction. Blockade of LOX-1 functions may turn out to be a suitable target for the therapeutic intervention of atherosclerosis.
- Sawamura, T. et al. (1997) Nature 386:73.
- Daugherty, A. (2000) Curr. Opin. Cardiovasc. Pulm. Ren. Invest. Drugs. 2:223.
- Platt, N. and S. Gordon (2001) J. Clin. Invest. 108:649.
- Platt, N. and S. Gordon (1998) Chem. Biol. 5:R193.
- Jono, T. et al. (2002) FEBS Lett. 511:170.
- Kume, N. et al. (2001) Curr. Opin. Lipidol. 12:419.
- Delneste, Y. et al. (2002) Immunity 17:353.
- Bruneau, N. et al. (2003) Mol. Biol. Cell 14:2861.
- Xie, Q. et al. (2004) DNA and Cell Biol. 23:111.
- Chen, J. et al. (2003) Circ. Res. 94:370.
- Hoshikawa, H. et al. (1998) Biochem. Biophys. Res. Comm. 245:841.
Citations for Recombinant Mouse LOX-1/OLR1 Protein, CF
R&D Systems personnel manually curate a database that contains references using R&D Systems products. The data collected includes not only links to publications in PubMed, but also provides information about sample types, species, and experimental conditions.
3
Citations: Showing 1 - 3
Filter your results:
Filter by:
-
'Affimer' synthetic protein scaffolds block oxidized LDL binding to the LOX-1 scavenger receptor and inhibit ERK1/2 activation
Authors: Roper, BWR;Tiede, C;Abdul-Zani, I;Cuthbert, GA;Jade, D;Al-Aufi, A;Critchley, WR;Saikia, Q;Homer-Vanniasinkam, S;Sawamura, T;McPherson, MJ;Harrison, MA;Tomlinson, DC;Ponnambalam, S;
The Journal of biological chemistry
Species: Mouse
Sample Types: Proteins
Applications: ELISA Capture -
Oxidation by neutrophils-derived HOCl increases immunogenicity of proteins by converting them into ligands of several endocytic receptors involved in antigen uptake by dendritic cells and macrophages.
Authors: Biedron R, Konopinski M, Marcinkiewicz J, Jozefowski S
PLoS ONE, 2015-04-07;10(4):e0123293.
Species: Mouse
Sample Types: Protein
Applications: Binding Assay -
Leptin-deficient (ob/ob) mouse ovaries show fatty degeneration, enhanced apoptosis and decreased expression of steroidogenic acute regulatory enzyme.
Int J Obes (Lond), 2011-11-15;36(8):1047-53.
Applications: Western Blot
FAQs
No product specific FAQs exist for this product, however you may
View all Proteins and Enzyme FAQsReviews for Recombinant Mouse LOX-1/OLR1 Protein, CF
There are currently no reviews for this product. Be the first to review Recombinant Mouse LOX-1/OLR1 Protein, CF and earn rewards!
Have you used Recombinant Mouse LOX-1/OLR1 Protein, CF?
Submit a review and receive an Amazon gift card.
$25/€18/£15/$25CAN/¥75 Yuan/¥2500 Yen for a review with an image
$10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen for a review without an image