Cultrex 3-D Culture Matrix Rat Collagen I
Cultrex 3-D Culture Matrix Rat Collagen I Summary
3-D Culture Matrix Collagen I is an extracellular matrix hydrogel that directs cells to grow in three dimensions and assemble into organotypic structures in vitro.Why Use Cultrex 3-D Culture Matrix Rat Collagen I?
Cultrex 3-D Culture Matrix Collagen I is purified from rat tail tendons and is provided at a high concentration that is capable of polymerizing to form a hydrogel. Collagen I is the major structural component of extracellular matrices (ECM) found in connective tissue and internal organs, but is most prevalent in the dermis, tendons, and bone. It is a 300 kDa molecule composed of two alpha1(I) chains and one alpha2(I) chain that spontaneously forms a triple helix scaffold at a neutral pH and 37̊ C. This phenomenon can be exploited to promote cell attachment, growth, differentiation, migration, and tissue morphogenesis during development. To provide the most standardized Collagen I for use in 3-D cultures, a special process is employed to provide material at a standard concentration of approximately 5 mg/mL. This material is then incorporated in a 3-D culture to validate efficacy.Cultrex 3-D Culture Matrix Collagen I is a purified stromal ECM protein that has been developed, produced and qualified specifically for use in 3-D culture studies. 3-D Culture Matrix Collagen I may also be used to supplement customized hydrogel or medium formulations for cell culture.
Negative for the presence of bacteria and fungi.
Specifications
Cell Attachment - Tested for the ability to Supports cell attachment and spreading of MG63 human osteosarcoma cells.
Limitations
For research use only. Not for diagnostic use.
Product Datasheets
Citations for Cultrex 3-D Culture Matrix Rat Collagen I
R&D Systems personnel manually curate a database that contains references using R&D Systems products. The data collected includes not only links to publications in PubMed, but also provides information about sample types, species, and experimental conditions.
24
Citations: Showing 1 - 10
Filter your results:
Filter by:
-
Human Mesofluidic Intestinal Model for Studying Transport of Drug Carriers and Bacteria Through a Live Mucosal Barrier
Authors: Wang, CM;Oberoi, HS;Law, D;Li, Y;Kassis, T;Griffith, LG;Breault, DT;Carrier, RL;
bioRxiv : the preprint server for biology 2024-09-22
-
The microbial metabolite p-cresol compromises the vascular barrier and induces endothelial cytotoxicity and inflammation in a 3D human vessel-on-a-chip
Authors: Mankhong, S;Den-Udom, T;Tanawattanasuntorn, T;Suriyun, T;Muta, K;Kitiyakara, C;Ketsawatsomkron, P;
Scientific reports 2024-08-09
-
A Fibroblast-Derived Secretome Stimulates the Growth and Invasiveness of 3D Plexiform Neurofibroma Spheroids
Authors: Ji, K;Schwenkel, GJ;Mattingly, RR;Sundararaghavan, HG;Zhang, ZG;Chopp, M;
Cancers 2024-07-09
-
Rab18 Drift in Lipid Droplet and Endoplasmic Reticulum Interactions of Adipocytes under Obesogenic Conditions
Authors: López-Alcalá, J;Soler-Vázquez, MC;Tercero-Alcázar, C;Sánchez-Ceinos, J;Guzmán-Ruiz, R;Malagón, MM;Gordon, A;
International journal of molecular sciences 2023-12-06
-
Normal Uterine Fibroblast Are Reprogramed into Ovarian Cancer-Associated Fibroblasts by Ovarian Tumor-derived Conditioned Media
Authors: Axemaker, H;Plesselova, S;Calar, K;Jorgensen, M;Wollman, J;de la Puente, P;
bioRxiv : the preprint server for biology 2023-10-02
-
In vitro production of infectious Plasmodium falciparum sporozoites
Authors: AG Eappen, T Li, M Marquette, S Chakravart, N Kc, G Zanghi, BU Hoffman, H Hettiarach, A Patil, Y Abebe, C Tran, AA Yossef, I McWilliams, RD Morrison, A Rathakrish, E Inbar, ASI Aly, P De La Vega, M Belmonte, M Sedegah, T Wai, JJ Campo, H King, SHI Kappe, M Li, PF Billingsle, BKL Sim, SL Hoffman
Nature, 2022-12-07;612(7940):534-539. 2022-12-07
-
Deficiency of lncRNA SNHG12 impairs ischemic limb neovascularization by altering an endothelial cell cycle pathway
Authors: DA Gross, HS Cheng, R Zhuang, MG McCoy, D Pérez-Crem, Z Salyers, AKMK Wara, S Haemmig, TE Ryan, MW Feinberg
JCI Insight, 2022-01-11;0(0):. 2022-01-11
-
In vitro production of infectious Plasmodium falciparum sporozoites
Authors: AG Eappen, T Li, M Marquette, S Chakravart, N Kc, G Zanghi, BU Hoffman, H Hettiarach, A Patil, Y Abebe, C Tran, AA Yossef, I McWilliams, RD Morrison, A Rathakrish, E Inbar, ASI Aly, P De La Vega, M Belmonte, M Sedegah, T Wai, JJ Campo, H King, SHI Kappe, M Li, PF Billingsle, BKL Sim, SL Hoffman
Nature, 2022;612(7940):534-539. 2022
-
Deoxynivalenol interferes with intestinal motility via injuring the contractility of enteric smooth muscle cells: A novel hazard to the gastrointestinal tract by environmental toxins
Authors: X Ji, Y Qiao, W Zheng, H Jiang, W Yao
Ecotoxicology and environmental safety, 2021-08-16;224(0):112656. 2021-08-16
-
Gamma-synuclein is a novel prognostic marker that promotes tumor cell migration in biliary tract carcinoma
Authors: Y Takemura, H Ojima, G Oshima, M Shinoda, Y Hasegawa, M Kitago, H Yagi, Y Abe, S Hori, Y Fujii-Nish, N Kubota, Y Masuda, T Hibi, M Sakamoto, Y Kitagawa
Cancer Medicine, 2021-07-09;0(0):. 2021-07-09
-
&alpha-Catenin levels determine direction of YAP/TAZ response to autophagy perturbation
Authors: M Pavel, SJ Park, RA Frake, SM Son, MM Manni, CF Bento, M Renna, T Ricketts, FM Menzies, R Tanasa, DC Rubinsztei
Nature Communications, 2021-03-17;12(1):1703. 2021-03-17
-
3D spheroid models of paediatric SHH medulloblastoma mimic tumour biology, drug response and metastatic dissemination
Authors: SJ Roper, F Linke, PJ Scotting, B Coyle
Scientific Reports, 2021-02-19;11(1):4259. 2021-02-19
-
Vav2 catalysis-dependent pathways contribute to skeletal muscle growth and metabolic homeostasis
Authors: S Rodríguez-, LF Lorenzo-Ma, I Fernández-, B Porteiro, C Veyrat-Dur, D Beiroa, O Al-Massadi, A Abad, C Diéguez, R Coppari, R Nogueiras, XR Bustelo
Nat Commun, 2020-11-16;11(1):5808. 2020-11-16
-
The Microfluidic Trainer: Design, Fabrication and Validation of a Tool for Testing and Improving Manual Skills
Authors: F Costa, L Falzetti, N Baldini, S Avnet
Micromachines (Basel), 2020-09-19;11(9):. 2020-09-19
-
Robust and Scalable Angiogenesis Assay of Perfused 3D Human iPSC-Derived Endothelium for Anti-Angiogenic Drug Screening
Authors: V van Duinen, W Stam, E Mulder, F Famili, A Reijerkerk, P Vulto, T Hankemeier, AJ van Zonnev
Int J Mol Sci, 2020-07-07;21(13):. 2020-07-07
-
LncRNA-Safe contributes to cardiac fibrosis through Safe-Sfrp2-HuR complex in mouse myocardial infarction
Authors: K Hao, W Lei, H Wu, J Wu, Z Yang, S Yan, XA Lu, J Li, X Xia, X Han, W Deng, G Zhong, ZA Zhao, S Hu
Theranostics, 2019-09-25;9(24):7282-7297. 2019-09-25
-
Nrf2 and SQSTM1/p62 jointly contribute to mesenchymal transition and invasion in glioblastoma
Authors: P Pölönen, A Jawahar De, HM Leinonen, HK Jyrkkänen, S Kuosmanen, M Mononen, A Jain, T Tuomainen, S Pasonen-Se, JM Hartikaine, A Mannermaa, M Nykter, P Tavi, T Johansen, M Heinäniemi, AL Levonen
Oncogene, 2019-08-23;0(0):. 2019-08-23
-
A Role of Agrin in Maintaining the Stability of Vascular Endothelial Growth Factor Receptor-2 during Tumor Angiogenesis
Authors: K Njah, S Chakrabort, B Qiu, S Arumugam, A Raju, AV Pobbati, M Lakshmanan, V Tergaonkar, G Thibault, X Wang, W Hong
Cell Rep, 2019-07-23;28(4):949-965.e7. 2019-07-23
-
Transient Receptor Potential Channel Expression Signatures in Tumor-Derived Endothelial Cells: Functional Roles in Prostate Cancer Angiogenesis
Authors: M Bernardini, A Brossa, G Chinigo, GP Grolez, G Trimaglio, L Allart, A Hulot, G Marot, T Genova, A Joshi, V Mattot, G Fromont, L Munaron, B Bussolati, N Prevarskay, A Fiorio Pla, D Gkika
Cancers (Basel), 2019-07-08;11(7):. 2019-07-08
-
Genome-Wide CRISPR-Cas9 Screens Expose Genetic Vulnerabilities and Mechanisms of Temozolomide Sensitivity in Glioblastoma Stem Cells
Authors: G MacLeod, DA Bozek, N Rajakulend, V Monteiro, M Ahmadi, Z Steinhart, MM Kushida, H Yu, FJ Coutinho, FMG Cavalli, I Restall, X Hao, T Hart, HA Luchman, S Weiss, PB Dirks, S Angers
Cell Rep, 2019-04-16;27(3):971-986.e9. 2019-04-16
-
Tubuloids derived from human adult kidney and urine for personalized disease modeling
Authors: F Schutgens, MB Rookmaaker, T Margaritis, A Rios, C Ammerlaan, J Jansen, L Gijzen, M Vormann, A Vonk, M Viveen, FY Yengej, S Derakhshan, KM de Winter-, B Artegiani, R van Boxtel, E Cuppen, APA Hendrickx, MM van den He, E Heitzer, H Lanz, J Beekman, JL Murk, R Masereeuw, F Holstege, J Drost, MC Verhaar, H Clevers
Nat. Biotechnol., 2019-03-04;37(3):303-313. 2019-03-04
-
Fibulin-6 regulates pro-fibrotic TGF-beta responses in neonatal mouse ventricular cardiac fibroblasts.
Authors: Chowdhury A, Hasselbach L, Echtermeyer F, Jyotsana N, Theilmeier G, Herzog C
Sci Rep, 2017-02-17;7(0):42725. 2017-02-17
-
Organotypic culture of untransformed and tumorigenic primary mammary epithelial cells.
Authors: Jechlinger M
Cold Spring Harb Protoc, 2015-05-01;2015(5):457-61. 2015-05-01
-
Metabotropic glutamate receptor-1 contributes to progression in triple negative breast cancer.
Authors: Banda, Malathi, Speyer, Cecilia, Semma, Sara N, Osuala, Kingsley, Kounalakis, Nicole, Torres Torres, Keila E, Barnard, Nicola J, Kim, Hyunjin, Sloane, Bonnie F, Miller, Fred R, Goydos, James S, Gorski, David H
PLoS ONE, 2014-01-03;9(1):e81126. 2014-01-03
FAQs
-
What type of analysis is typically applied for organoid or 3-D cell cultures?
Within the organoid, spheroid, or 3-D culture, cells may be assessed for morphology, apical/basal polarity, protein localization, and relative proliferation. In addition, cells may be isolated from the 3-D culture and evaluated for levels of RNA and protein expression, as well as modifications to DNA.
-
What is the difference between the standard Cultrex Rat Collagen I and the Cultrex 3-D Rat Collagen I?
Cultrex 3-D Rat Collagen I undergoes the same basic purification and efficacy tests as the standard collagen. However, it undergoes additional 3-D culture validation; it has been tested extensively for the ability to promote growth and differentiation of cell types, visualized by morphology in three dimensions in vitro.
-
What are 3-D cultures?
3-D cultures are in vitro cultures where immortalized cell lines, primary cell lines, stem cells, or tissue explants are placed within hydrogel matrices, such as Cultrex Basement Membrane Extract, that mimic in vivo cell environments and allow cells to proliferate in three dimensions.
-
What is the advantage of 3-D culture over traditional 2-D culture?
While 2-D culture has been used for studying many aspects of cell function and behavior, the tissue-culture treated plastic environment is unlike anything found within living organisms. As a result, cells in 2-D culture exhibit altered morphology, function, proliferation, and gene expression when compared to their emanating tissues. By placing these cells in a 3-D environment, they assume biological and biochemical characteristics similar to what is observed in vivo.
-
What are the variables associated with 3-D culture?
The major variables associated with 3-D culture are cell type, cell seeding density, composition of hydrogel, thickness of hydrogel, stiffness of hydrogel, composition of cell culture medium, and time of culture.
-
What are the different types of 3-D culture?
The two principal methods for performing 3-D culture are the top assay and embedded assay. For the top assay, cells are seeded on a thick gel of Cultrex Basement Membrane Extract (BME) or Extracellular Matrix Protein. A thin overlay of cell culture medium is then applied to the cells. For the embedded assay, cells are resuspended within a thick gel of Cultrex BME or ECM and the culture media is applied on top. The top assay is easier to setup, to control seeding densities, and to keep cells within one focal plane for analysis.
-
How should cells be cultured prior to setting up the 3-D culture?
Cells need to be healthy and actively dividing in 2-D culture. Cells should be passaged two or three times after resuspension from cryopreservation, and they should never surpass 80% confluency during each passage. Cells should also be assessed for viability using trypan blue, and they should exhibit less than 5% staining.
-
Will Cultrex 3-D culture Matrix rat Collagen 1, Catalog # 3447-020-01, still work if it has been frozen?
This product will likely not form a gel after being frozen.
-
Is Cultrex 3-D Culture Matrix Rat Collagen I (Catalog # 3447-020-01) atelocollagen or telocollagen?
Cultrex 3-D Culture Matrix Rat Collagen I (Catalog # 3447-020-01) is telocollagen.
-
Can the Organoid Harvesting Solution, Catalog # 3700-100-01, be used to dissociate cells grown on a substrate of Cultrex Rat Collagen 1?
The Organoid Harvesting Solution works well with BME (Basement Membrane Extract). For cells grown on Cultrex Rat Collagen 1, the recommended enzyme to use to dissociate cells is Collagenase. Collagenase treatment at 37oC for 30 minutes is recommended.
-
Does the stability of Cultrex 3-D Culture Matrix Rat Collagen I (Catalog # 3447-020-01) change after opening?
We recommend storing the product at 2-8 °C, and provided it has not been neutralized with NaOH or Sodium Bicarbonate, it should remain stable and perform as expected as long as it is used prior to the expiration date.
Reviews for Cultrex 3-D Culture Matrix Rat Collagen I
Average Rating: 3 (Based on 1 Review)
Have you used Cultrex 3-D Culture Matrix Rat Collagen I?
Submit a review and receive an Amazon gift card.
$25/€18/£15/$25CAN/¥75 Yuan/¥2500 Yen for a review with an image
$10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen for a review without an image
Filter by: