Recombinant Human Flt-3 Ligand/FLT3L Protein

NEW Next Generation Products! Please try our NEW version of Human Recombinant Flt-3 Ligand (308-FKHB). Combining R&D Systems quality with scalability that allows for lower price points and a solid supply chain.

Carrier Free

Show More
Catalog # Availability Size / Price Qty
308-FK-005/CF In Stock5 ug / $200
308-FK-025/CF In Stock25 ug / $624
308-FK-100/CF In Stock100 ug / $1,075

With Carrier

Show More
Catalog # Availability Size / Price Qty
308-FK-005 In Stock5 ug / $200
308-FK-025 In Stock25 ug / $624
308-FK-100 In Stock100 ug / $1,075
Bulk Orders
Equivalent bioactivity of Sf21-derived RUO and HEK293-derived RUO Recombinant Human Flt-3 Ligand.
1 Image
Product Details
Citations (68)
FAQs
Supplemental Products
Reviews (3)

Recombinant Human Flt-3 Ligand/FLT3L Protein Summary

Product Specifications

Purity
>97%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining.
Endotoxin Level
<0.10 EU per 1 μg of the protein by the LAL method.
Activity
Measured in a cell proliferation assay using BaF3 mouse pro‑B cells transfected with mouse Flt-3. The ED50 for this effect is 0.200-1.00 ng/mL.
Source
Spodoptera frugiperda, Sf 21 (baculovirus)-derived human Flt-3 Ligand/FLT3L protein
Thr27-Pro185
Accession #
N-terminal Sequence
Analysis
Thr27
Predicted Molecular Mass
17.5 kDa
SDS-PAGE
17-30 kDa, reducing conditions

Product Datasheets

You must select a language.

x

308-FK (with carrier)

You must select a language.

x

308-FK/CF (carrier free)

Carrier Free

What does CF mean?

CF stands for Carrier Free (CF). We typically add Bovine Serum Albumin (BSA) as a carrier protein to our recombinant proteins. Adding a carrier protein enhances protein stability, increases shelf-life, and allows the recombinant protein to be stored at a more dilute concentration. The carrier free version does not contain BSA.

What formulation is right for me?

In general, we advise purchasing the recombinant protein with BSA for use in cell or tissue culture, or as an ELISA standard. In contrast, the carrier free protein is recommended for applications, in which the presence of BSA could interfere.

308-FK

Formulation Lyophilized from a 0.2 μm filtered solution in Acetonitrile and TFA with BSA as a carrier protein.
Reconstitution Reconstitute at 100 μg/mL in sterile PBS containing at least 0.1% human or bovine serum albumin.
Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.
Stability & Storage: Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
  • 12 months from date of receipt, -20 to -70 °C as supplied.
  • 1 month, 2 to 8 °C under sterile conditions after reconstitution.
  • 3 months, -20 to -70 °C under sterile conditions after reconstitution.

308-FK/CF

Formulation Lyophilized from a 0.2 μm filtered solution in Acetonitrile and TFA.
Reconstitution Reconstitute 5 µg vials at 50 µg/mL in sterile PBS. Reconstitute 25 µg or larger vials at 100 µg/mL in sterile PBS.
Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.
Stability & Storage: Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
  • 12 months from date of receipt, -20 to -70 °C as supplied.
  • 1 month, 2 to 8 °C under sterile conditions after reconstitution.
  • 3 months, -20 to -70 °C under sterile conditions after reconstitution.

Scientific Data

Bioactivity View Larger

Equivalent bioactivity of Sf21-derived RUO (Catalog # 308-FK) and HEK293-derived RUO (308-FKHB) Recombinant Human Flt-3 Ligand as measured in a cell proliferation assay using the cell proliferation of BaF3 mouse pro-B cell line transfected with mouse Flt-3. (orange,green, respectively).

Reconstitution Calculator

Background: Flt-3 Ligand/FLT3L

Flt‑3 Ligand, also known as FLT3L, is an alpha-helical cytokine that promotes the differentiation of multiple hematopoietic cell lineages (1-3). Mature human Flt‑3 Ligand consists of a 158 amino acid (aa) extracellular domain (ECD) with a cytokine-like domain and a juxtamembrane tether region, a 21 aa transmembrane segment, and a 30 aa cytoplasmic tail (4-7). Within the ECD, human Flt‑3 Ligand shares 71% and 65% aa sequence identity with mouse and rat Flt‑3 Ligand, respectively (4-6). The human and mouse Flt‑3 Ligand proteins show cross-species activity. Flt-3 Ligand is also structurally related to M-CSF and SCF. Flt-3 Ligand is widely expressed in various human and mouse tissues. It is expressed as a noncovalently-linked dimer by T cells and bone marrow and thymic fibroblasts (1, 8). Each 36 kDa chain of the Flt-3 Ligand dimer carries approximately 12 kDa of N- and O-linked carbohydrates (8). Alternate splicing and proteolytic cleavage of the transmembrane form of the Flt-3 Ligand protein can generate a soluble 30 kDa fragment that includes the cytokine-like domain (4, 8). Alternate splicing of human Flt‑3 Ligand also generates membrane-associated isoforms that contain either a truncated cytoplasmic tail or an 85 aa substitution following the cytokine-like domain in the ECD of the Flt-3 Ligand protein (4, 5, 8). Both transmembrane and soluble forms of Flt‑3 Ligand signal through the tyrosine kinase receptor Flt-3/Flk-2 (3, 4, 6, 7). Flt‑3 Ligand induces the expansion of monocytes and immature dendritic cells as well as early B cell lineage differentiation (2, 9). Additionally, Flt-3 Ligand synergizes with IL-3, GM-CSF, and SCF to promote the mobilization and myeloid differentiation of hematopoietic stem cells (4-6). Flt-3 Ligand also cooperates with IL-2, IL-6, IL-7, and IL-15 to induce NK cell development and with IL-3, IL-7, and IL-11 to induce terminal B cell maturation (1, 10). Animal studies show that Flt‑3 Ligand reduces the severity of experimentally induced allergic inflammation (11).

References
  1. Wodnar-Filipowicz, A. (2003) News Physiol. Sci. 18:247.
  2. Dong, J. et al. (2002) Cancer Biol. Ther. 1:486.
  3. Gilliland, D.G. and J.D. Griffin (2002) Blood 100:1532.
  4. Hannum, C. et al. (1994) Nature 368:643.
  5. Lyman, S.D. et al. (1994) Blood 83:2795.
  6. Lyman, S.D. et al. (1993) Cell 75:1157.
  7. Savvides, S.N. et al. (2000) Nat. Struct. Biol. 7:486.
  8. McClanahan, T. et al. (1996) Blood 88:3371.
  9. Diener, K.R. et al. (2008) Exp. Hematol. 36:51.
  10. Farag, S.S. and M.A. Caligiuri (2006) Blood Rev. 20:123.
  11. Edwan, J.H. et al. (2004) J. Immunol. 172:5016.
Long Name
fms-like Tyrosine Kinase 3 Ligand
Entrez Gene IDs
2323 (Human); 14256 (Mouse); 102125470 (Cynomolgus Monkey); 493796 (Feline)
Alternate Names
FL; FLG3L; Flt3 ligand; Flt-3 Ligand; Flt3L; FLT3LG; fms-related tyrosine kinase 3 ligand; SL cytokine

Citations for Recombinant Human Flt-3 Ligand/FLT3L Protein

R&D Systems personnel manually curate a database that contains references using R&D Systems products. The data collected includes not only links to publications in PubMed, but also provides information about sample types, species, and experimental conditions.

68 Citations: Showing 1 - 10
Filter your results:

Filter by:

  1. Stage-specific CAR-mediated signaling generates naïve-like, TCR-null CAR T cells from induced pluripotent stem cells
    Authors: Yoo, SP;Yuan, X;Engstrom, C;Chang, P;Li, S;Lathrop, L;Lagosh, J;Seet, C;Kohn, DB;Crooks, GM;
    bioRxiv : the preprint server for biology
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  2. Human iPSC-derived myelinating organoids and globoid cells to study Krabbe Disease
    Authors: Evans, LMP;Gawron, J;Sim, FJ;Laura Feltri, M;Marziali, LN;
    bioRxiv : the preprint server for biology
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  3. Lactate dehydrogenase A regulates tumor-macrophage symbiosis to promote glioblastoma progression
    Authors: Khan, F;Lin, Y;Ali, H;Pang, L;Dunterman, M;Hsu, WH;Frenis, K;Grant Rowe, R;Wainwright, DA;McCortney, K;Billingham, LK;Miska, J;Horbinski, C;Lesniak, MS;Chen, P;
    Nature communications
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  4. LDHA-regulated tumor-macrophage symbiosis promotes glioblastoma progression
    Authors: Chen, P;Khan, F;Lin, Y;Ali, H;Pang, L;Dunterman, M;Hsu, WH;Frenis, K;Rowe, RG;Wainwright, D;McCortney, K;Billingham, L;Miska, J;Horbinski, C;Lesniak, M;
    Research square
    Species: Human, Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  5. Potent and uniform fetal hemoglobin induction via base editing
    Authors: Mayuranathan, T;Newby, GA;Feng, R;Yao, Y;Mayberry, KD;Lazzarotto, CR;Li, Y;Levine, RM;Nimmagadda, N;Dempsey, E;Kang, G;Porter, SN;Doerfler, PA;Zhang, J;Jang, Y;Chen, J;Bell, HW;Crossley, M;Bhoopalan, SV;Sharma, A;Tisdale, JF;Pruett-Miller, SM;Cheng, Y;Tsai, SQ;Liu, DR;Weiss, MJ;Yen, JS;
    Nature genetics
    Species: Human
    Sample Types: Whole Cells
    Applications: Cell Culture
  6. Primary role of type I interferons for the induction of functionally optimal antigen-specific CD8+ T cells in HIV infection
    Authors: MP Cabral-Pic, L Papagno, X Lahaye, F Perdomo-Ce, S Volant, E White, V Monceaux, S Llewellyn-, R Fromentin, DA Price, N Chomont, N Manel, A Saez-Cirio, V Appay
    EBioMedicine, 2023-04-12;91(0):104557.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  7. Strength of CAR signaling determines T�cell versus ILC differentiation from pluripotent stem cells
    Authors: S Li, CS Wang, A Montel-Hag, HC Chen, S Lopez, O Zhou, K Dai, S Tsai, W Satyadi, C Botero, C Wong, D Casero, GM Crooks, CS Seet
    Cell Reports, 2023-03-11;42(3):112241.
    Species: Human
    Sample Types: Organoid
    Applications: Bioassay
  8. Improved Sendai viral system for reprogramming to naive pluripotency.
    Authors: Kunitomi A, Hirohata R, Arreola V, Osawa M, Kato T, Nomura M, Kawaguchi J, Hara H, Kusano K, Takashima Y, Takahashi K, Fukuda K, Takasu N, Yamanaka S
    Cell Rep Methods, 2022-10-17;2(11):100317.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  9. DLL4 and VCAM1 enhance the emergence of T cell-competent hematopoietic progenitors from human pluripotent stem cells
    Authors: YS Michaels, JM Edgar, MC Major, EL Castle, C Zimmerman, T Yin, A Hagner, C Lau, HH Hsu, MI Ibañez-Rio, LJ Durland, DJHF Knapp, PW Zandstra
    Science Advances, 2022-08-24;8(34):eabn5522.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  10. EZH1 repression generates mature iPSC-derived CAR T�cells with enhanced antitumor activity
    Authors: R Jing, I Scarfo, MA Najia, E Lummertz d, A Han, M Sanborn, T Bingham, C Kubaczka, DK Jha, M Falchetti, TM Schlaeger, TE North, MV Maus, GQ Daley
    Cell Stem Cell, 2022-08-04;29(8):1181-1196.e6.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  11. Clinical evolution, genetic landscape and trajectories of clonal hematopoiesis in SAMD9/SAMD9L syndromes
    Authors: SS Sahoo, VB Pastor, C Goodings, RK Voss, EJ Kozyra, A Szvetnik, P Noellke, M Dworzak, J Starý, F Locatelli, R Masetti, M Schmugge, B De Moerloo, A Catala, K Kállay, D Turkiewicz, H Hasle, J Buechner, K Jahnukaine, M Ussowicz, S Polychrono, OP Smith, O Fabri, S Barzilai, V de Haas, I Baumann, S Schwarz-Fu, European W, MR Niewisch, MG Sauer, B Burkhardt, P Lang, P Bader, R Beier, I Müller, MH Albert, R Meisel, A Schulz, G Cario, PK Panda, J Wehrle, S Hirabayash, M Derecka, R Durruthy-D, G Göhring, A Yoshimi-No, M Ku, D Lebrecht, M Erlacher, C Flotho, B Strahm, CM Niemeyer, MW Wlodarski
    Nature Medicine, 2021-10-07;27(10):1806-1817.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  12. Base editing of haematopoietic stem cells rescues sickle cell disease in mice
    Authors: GA Newby, JS Yen, KJ Woodard, T Mayuranath, CR Lazzarotto, Y Li, H Sheppard-T, SN Porter, Y Yao, K Mayberry, KA Everette, Y Jang, CJ Podracky, E Thaman, C Lechauve, A Sharma, JM Henderson, MF Richter, KT Zhao, SM Miller, T Wang, LW Koblan, AP McCaffrey, JF Tisdale, TA Kalfa, SM Pruett-Mil, SQ Tsai, MJ Weiss, DR Liu
    Nature, 2021-06-02;0(0):.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  13. Human pluripotent stem cells identify molecular targets of trisomy 12 in chronic lymphocytic leukemia patients
    Authors: JC Reid, D Golubeva, AL Boyd, CG Hollands, C Henly, L Orlando, A Leber, J Hébert, F Morabito, G Cutrona, L Agnelli, M Gentile, M Ferrarini, A Neri, B Leber, M Bhatia
    Cell Reports, 2021-03-16;34(11):108845.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  14. Sequential CRISPR gene editing in human iPSCs charts the clonal evolution of myeloid leukemia and identifies early disease targets
    Authors: T Wang, AR Pine, AG Kotini, H Yuan, L Zamparo, DT Starczynow, C Leslie, EP Papapetrou
    Cell Stem Cell, 2021-02-10;0(0):.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  15. Aberrant expression of NKL homeobox genes HMX2 and HMX3 interferes with cell differentiation in acute myeloid leukemia
    Authors: S Nagel, C Pommerenke, C Meyer, RAF MacLeod, HG Drexler
    PLoS ONE, 2020-10-13;15(10):e0240120.
    Species: Human
    Sample Types: Whole Cells
    Applications: Cell Culture
  16. Acute Myeloid Leukemia iPSCs Reveal a Role for RUNX1 in the Maintenance of Human Leukemia Stem Cells
    Authors: J Wesely, AG Kotini, F Izzo, H Luo, H Yuan, J Sun, M Georgomano, A Zviran, AG Deslaurier, N Dusaj, SD Nimer, C Leslie, DA Landau, MG Kharas, EP Papapetrou
    Cell Rep, 2020-06-02;31(9):107688.
    Species: Human
    Sample Types: Whole Cell
  17. Low-Dose Busulfan Reduces Human CD34+ Cell Doses Required for Engraftment in c-kit Mutant Immunodeficient Mice
    Authors: A Leonard, M Yapundich, T Nassehi, J Gamer, CM Drysdale, JJ Haro-Mora, S Demirci, MM Hsieh, N Uchida, JF Tisdale
    Mol Ther Methods Clin Dev, 2019-11-11;15(0):430-437.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  18. Genome-wide microhomologies enable precise template-free editing of biologically relevant deletion mutations
    Authors: J Grajcarek, J Monlong, Y Nishinaka-, M Nakamura, M Nagai, S Matsuo, D Lougheed, H Sakurai, MK Saito, G Bourque, K Woltjen
    Nat Commun, 2019-10-24;10(1):4856.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  19. Development of a forward-oriented therapeutic lentiviral vector for hemoglobin disorders
    Authors: N Uchida, MM Hsieh, L Raines, JJ Haro-Mora, S Demirci, AC Bonifacino, AE Krouse, ME Metzger, RE Donahue, JF Tisdale
    Nat Commun, 2019-10-02;10(1):4479.
    Species: Human
    Sample Types: Whole Cells
    Applications: Cell Culture
  20. Biosafety Studies of a Clinically Applicable Lentiviral Vector for the Gene Therapy of Artemis-SCID
    Authors: S Charrier, C Lagresle-P, V Poletti, M Rothe, G Cédrone, B Gjata, F Mavilio, A Fischer, A Schambach, JP de Villart, M Cavazzana, S Hacein-Bey, A Galy
    Mol Ther Methods Clin Dev, 2019-09-13;15(0):232-245.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Cell Culture
  21. Diminished AHR signaling drives human acute myeloid leukemia stem cell maintenance
    Authors: M Ly, S Rentas, A Vujovic, N Wong, S Moreira, J Xu, N Holzapfel, S Bhatia, D Tran, MD Minden, JS Draper, KJ Hope
    Cancer Res., 2019-09-13;0(0):.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  22. Homologous Recombination-Based Genome Editing by Clade F AAVs Is Inefficient in the Absence of a Targeted DNA Break
    Authors: GL Rogers, HY Chen, H Morales, PM Cannon
    Mol. Ther., 2019-09-09;27(10):1726-1736.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  23. Interconversion between Tumorigenic and Differentiated States in Acute Myeloid Leukemia
    Authors: MD McKenzie, M Ghisi, EP Oxley, S Ngo, L Cimmino, C Esnault, R Liu, JM Salmon, CC Bell, N Ahmed, M Erlichster, MT Witkowski, GJ Liu, M Chopin, A Dakic, E Simankowic, G Pomilio, T Vu, P Krsmanovic, S Su, L Tian, TM Baldwin, DA Zalcenstei, L DiRago, S Wang, D Metcalf, RW Johnstone, BA Croker, GI Lancaster, AJ Murphy, SH Naik, SL Nutt, V Pospisil, T Schroeder, M Wall, MA Dawson, AH Wei, H de Thé, ME Ritchie, J Zuber, RA Dickins
    Cell Stem Cell, 2019-08-01;25(2):258-272.e9.
    Species: Human
    Sample Types: Whole Cells
    Applications: Cell Culture
  24. CRISPR/Cas9 mediated ELANE knockout enables neutrophilic maturation of primary hematopoietic stem and progenitor cells and induced pluripotent stem cells of severe congenital neutropenia patients
    Authors: M Nasri, M Ritter, P Mir, B Dannenmann, N Aghaallaei, D Amend, V Makaryan, Y Xu, B Fletcher, R Bernhard, I Steiert, K Hahnel, J Berger, I Koch, B Sailer, K Hipp, C Zeidler, M Klimiankou, B Bajoghli, DC Dale, K Welte, J Skokowa
    Haematologica, 2019-06-27;0(0):.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  25. Hemogenic Endothelium Differentiation from Human Pluripotent Stem Cells in A Feeder- and Xeno-free Defined Condition.
    Authors: Ohta R, Sugimura R, Niwa A, Saito M
    J Vis Exp, 2019-06-16;0(148):.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  26. Therapeutic discovery for marrow failure with MDS predisposition using pluripotent stem cells
    Authors: M Ruiz-Gutie, ÖV Bölükba??, G Alexe, AG Kotini, K Ballotti, CE Joyce, DW Russell, K Stegmaier, K Myers, CD Novina, EP Papapetrou, A Shimamura
    JCI Insight, 2019-04-30;5(0):.
    Species: Human
    Sample Types: Whole Cells
    Applications: Cell Culture
  27. Generation of a human induced pluripotent stem cell line, BRCi001-A, derived from a patient with mucopolysaccharidosis type I
    Authors: M Suga, T Kondo, K Imamura, R Shibukawa, Y Okanishi, Y Sagara, K Tsukita, T Enami, M Furujo, K Saijo, Y Nakamura, M Osawa, MK Saito, S Yamanaka, H Inoue
    Stem Cell Res, 2019-02-12;36(0):101406.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  28. High-Efficiency Lentiviral Transduction of Human CD34+ Cells in High-Density Culture with Poloxamer and Prostaglandin E2
    Authors: N Uchida, T Nassehi, CM Drysdale, J Gamer, M Yapundich, S Demirci, JJ Haro-Mora, A Leonard, MM Hsieh, JF Tisdale
    Mol Ther Methods Clin Dev, 2019-01-25;13(0):187-196.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  29. An integration-free iPSC line (MUSIi008-A) derived from a patient with severe hemolytic anemia carrying compound heterozygote mutations in KLF1 gene for disease modeling
    Authors: P Potirat, M Wattanapan, V Viprakasit, P Kheolamai, S Issaragris
    Stem Cell Res, 2018-12-14;34(0):101344.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  30. Restricted cell cycle is essential for clonal evolution and therapeutic resistance of pre-leukemic stem cells
    Authors: CS Tremblay, J Saw, SK Chiu, NC Wong, K Tsyganov, S Ghotb, AN Graham, F Yan, AA Guirguis, SE Sonderegge, N Lee, P Kalitsis, J Reynolds, SB Ting, DR Powell, SM Jane, DJ Curtis
    Nat Commun, 2018-08-30;9(1):3535.
    Species: Human
    Sample Types: Whole Cells
    Applications: Cell Culture
  31. STK3 is a therapeutic target for a subset of acute myeloid leukemias
    Authors: A Camgoz, M Paszkowski, S Satpathy, M Wermke, MV Hamann, M von Bonin, C Choudhary, S Knapp, F Buchholz
    Oncotarget, 2018-05-22;9(39):25458-25473.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  32. Human Cytomegalovirus Encodes a Novel FLT3 Receptor Ligand Necessary for Hematopoietic Cell Differentiation and Viral Reactivation
    Authors: LB Crawford, JH Kim, D Collins-Mc, BJ Lee, I Landais, C Held, JA Nelson, AD Yurochko, P Caposio
    MBio, 2018-04-24;9(2):.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  33. A CLK3-HMGA2 Alternative Splicing Axis Impacts Human Hematopoietic Stem Cell Molecular Identity throughout Development
    Authors: M Cesana, MH Guo, D Cacchiarel, L Wahlster, J Barragan, S Doulatov, LT Vo, B Salvatori, C Trapnell, K Clement, P Cahan, KM Tsanov, PM Sousa, B Tazon-Vega, A Bolondi, FM Giorgi, A Califano, JL Rinn, A Meissner, JN Hirschhorn, GQ Daley
    Cell Stem Cell, 2018-04-05;22(4):575-588.e7.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  34. Molecular transitions in early progenitors during human cord blood hematopoiesis
    Authors: S Zheng, E Papalexi, A Butler, W Stephenson, R Satija
    Mol. Syst. Biol., 2018-03-15;14(3):e8041.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  35. BRD3/4 inhibition and FLT3-ligand deprivation target pathways that are essential for the survival of human MLL-AF9+ leukemic cells
    Authors: M Carretta, AZ Brouwers-V, M Bosman, SJ Horton, JHA Martens, E Vellenga, JJ Schuringa
    PLoS ONE, 2017-12-14;12(12):e0189102.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  36. Polycomb protein RING1A limits hematopoietic differentiation in myelodysplastic syndromes
    Authors: A Palau, AK Garz, J Diesch, A Zwick, R Malinverni, V Valero, K Lappin, R Casquero, A Lennartsso, J Zuber, T Navarro, KI Mills, KS Götze, M Buschbeck
    Oncotarget, 2017-12-01;8(70):115002-115017.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  37. Targeting of Immune Cells by Dual TLR2/7 Ligands Suppresses Features of Allergic Th2 Immune Responses in Mice
    Authors: J Laiño, A Wangorsch, F Blanco, S Wolfheimer, M Krause, A Flaczyk, TM Möller, M Tsai, S Galli, S Vieths, M Toda, S Scheurer, S Schülke
    J Immunol Res, 2017-10-24;2017(0):7983217.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  38. Let-7 microRNA-dependent control of leukotriene signaling regulates the transition of hematopoietic niche in mice
    Authors: X Jiang, JS Hawkins, J Lee, CO Lizama, FL Bos, JP Zape, P Ghatpande, Y Peng, J Louie, G Lagna, AC Zovein, A Hata
    Nat Commun, 2017-07-25;8(1):128.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  39. A novel approach for the identification of efficient combination therapies in primary human acute myeloid leukemia specimens
    Authors: I Baccelli, J Krosl, G Boucher, I Boivin, VP Lavallée, J Hébert, S Lemieux, A Marinier, G Sauvageau
    Blood Cancer J, 2017-02-17;7(2):e529.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  40. Stage-Specific Human Induced Pluripotent Stem Cells Map the Progression of Myeloid Transformation to Transplantable Leukemia
    Authors: AG Kotini, CJ Chang, A Chow, H Yuan, TC Ho, T Wang, S Vora, A Solovyov, C Husser, M Olszewska, J Teruya-Fel, D Perumal, VM Klimek, A Spyridonid, RK Rampal, L Silverman, EP Reddy, E Papaemmanu, S Parekh, BD Greenbaum, CS Leslie, MG Kharas, EP Papapetrou
    Cell Stem Cell, 2017-02-16;0(0):.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  41. Pentraxin-2 suppresses c-Jun/AP-1 signaling to inhibit progressive fibrotic disease
    JCI Insight, 2016-12-08;1(20):e87446.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  42. Induced Pluripotent Stem Cell-Derived Natural Killer Cells for Treatment of Ovarian Cancer.
    Authors: Hermanson D, Bendzick L, Pribyl L, McCullar V, Vogel R, Miller J, Geller M, Kaufman D
    Stem Cells, 2015-12-06;34(1):93-101.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  43. Prospectively Isolated Human Bone Marrow Cell-Derived MSCs Support Primitive Human CD34-Negative Hematopoietic Stem Cells.
    Authors: Matsuoka Y, Nakatsuka R, Sumide K, Kawamura H, Takahashi M, Fujioka T, Uemura Y, Asano H, Sasaki Y, Inoue M, Ogawa H, Takahashi T, Hino M, Sonoda Y
    Stem Cells, 2015-05-01;33(5):1554-65.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  44. Functional Characterization of D9, a Novel Deazaneplanocin A (DZNep) Analog, in Targeting Acute Myeloid Leukemia (AML).
    Authors: Jiang X, Lim C, Li Z, Lee P, Yatim S, Guan P, Li J, Zhou J, Pan J, Chng W, Chai C, Yu Q
    PLoS ONE, 2015-04-30;10(4):e0122983.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  45. Reversible lineage-specific priming of human embryonic stem cells can be exploited to optimize the yield of differentiated cells.
    Authors: Lee J, Graham M, Collins T, Lee J, Hong S, McNicol A, Shapovalova Z, Bhatia M
    Stem Cells, 2015-04-01;33(4):1142-52.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  46. Regulated apoptosis of genetically modified hematopoietic stem and progenitor cells via an inducible caspase-9 suicide gene in rhesus macaques.
    Authors: Barese C, Felizardo T, Sellers S, Keyvanfar K, Di Stasi A, Metzger M, Krouse A, Donahue R, Spencer D, Dunbar C
    Stem Cells, 2015-01-01;33(1):91-100.
    Species: Primate - Macaca mulatta (Rhesus Macaque)
    Sample Types: Whole Cells
    Applications: Bioassay
  47. SCL, LMO1 and Notch1 reprogram thymocytes into self-renewing cells.
    Authors: Gerby B, Tremblay C, Tremblay M, Rojas-Sutterlin S, Herblot S, Hebert J, Sauvageau G, Lemieux S, Lecuyer E, Veiga D, Hoang T
    PLoS Genet, 2014-12-18;10(12):e1004768.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  48. Small-molecule inhibitor of glycogen synthase kinase 3beta 6-Bromoindirubin-3-oxime inhibits hematopoietic regeneration in stem cell recipient mice.
    Authors: Shen S, Xu N, Klamer G, Ko K, Khoo M, Ma D, Moore J, O'Brien T, Dolnikov A
    Stem Cells Dev, 2014-12-09;24(6):724-36.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  49. Human induced pluripotent stem cell derived erythroblasts can undergo definitive erythropoiesis and co-express gamma and beta globins.
    Authors: Yang C, French A, Goh P, Pagnamenta A, Mettananda S, Taylor J, Knight S, Nathwani A, Roberts D, Watt S, Carpenter L
    Br J Haematol, 2014-05-16;166(3):435-48.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  50. MicroRNA screen of human embryonic stem cell differentiation reveals miR-105 as an enhancer of megakaryopoiesis from adult CD34+ cells.
    Authors: Kamat V, Paluru P, Myint M, French D, Gadue P, Diamond S
    Stem Cells, 2014-05-01;32(5):1337-46.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  51. Clonal tracking of rhesus macaque hematopoiesis highlights a distinct lineage origin for natural killer cells.
    Authors: Wu C, Li B, Lu R, Koelle S, Yang Y, Jares A, Krouse A, Metzger M, Liang F, Lore K, Wu C, Donahue R, Chen I, Weissman I, Dunbar C
    Cell Stem Cell, 2014-04-03;14(4):486-99.
    Species: Primate - Macaca mulatta (Rhesus Macaque)
    Sample Types: Whole Cells
    Applications: Bioassay
  52. Repression of BIM mediates survival signaling by MYC and AKT in high-risk T-cell acute lymphoblastic leukemia.
    Authors: Reynolds, C, Roderick, J E, LaBelle, J L, Bird, G, Mathieu, R, Bodaar, K, Colon, D, Pyati, U, Stevenson, K E, Qi, J, Harris, M, Silverman, L B, Sallan, S E, Bradner, J E, Neuberg, D S, Look, A T, Walensky, L D, Kelliher, M A, Gutierrez, A
    Leukemia, 2014-02-20;28(9):1819-27.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  53. A lack of secretory leukocyte protease inhibitor (SLPI) causes defects in granulocytic differentiation.
    Authors: Klimenkova O, Ellerbeck W, Klimiankou M, Unalan M, Kandabarau S, Gigina A, Hussein K, Zeidler C, Welte K, Skokowa J
    Blood, 2013-12-18;123(8):1239-49.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  54. Patient-specific naturally gene-reverted induced pluripotent stem cells in recessive dystrophic epidermolysis bullosa.
    Authors: Tolar J, McGrath J, Xia L, Riddle M, Lees C, Eide C, Keene D, Liu L, Osborn M, Lund T, Blazar B, Wagner J
    J Invest Dermatol, 2013-12-06;134(5):1246-54.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  55. Characterization of CD56+ dendritic-like cells: a normal counterpart of blastic plasmacytoid dendritic cell neoplasm?
    Authors: Osaki Y, Yokohama A, Saito A, Tahara K, Yanagisawa K, Ogawa Y, Ishizaki T, Mitsui T, Koiso H, Takizawa M, Uchiumi H, Saitoh T, Handa H, Murakami H, Tsukamoto N, Nojima Y
    PLoS ONE, 2013-11-29;8(11):e81722.
    Species: Human
    Sample Types: Whole Cells
    Applications: Cell Culture
  56. Blood stem cell fate regulation by Delta-1-mediated rewiring of IL-6 paracrine signaling.
    Authors: Csaszar, Elizabet, Wang, Weijia, Usenko, Tatiana, Qiao, Wenlian, Delaney, Colleen, Bernstein, Irwin D, Zandstra, Peter W
    Blood, 2013-11-15;123(5):650-8.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  57. Epigenetic regulation of NANOG by miR-302 cluster-MBD2 completes induced pluripotent stem cell reprogramming.
    Authors: Lee M, Prasain N, Chae H, Kim Y, Mantel C, Yoder M, Broxmeyer H
    Stem Cells, 2013-04-01;31(4):666-81.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  58. Neurokinin-1 receptor signalling impacts bone marrow repopulation efficiency.
    Authors: Berger A, Frelin C, Shah D, Benveniste P, Herrington R, Gerard N, Zuniga-Pflucker J, Iscove N, Paige C
    PLoS ONE, 2013-03-14;8(3):U630.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Cell Culture
  59. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors.
    Authors: Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, Peng J, Lin E, Wang Y, Sosman J, Ribas A, Li J, Moffat J, Sutherlin DP, Koeppen H, Merchant M, Neve R, Settleman J
    Nature, 2012-07-26;487(7408):505-9.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  60. A novel serum-free monolayer culture for orderly hematopoietic differentiation of human pluripotent cells via mesodermal progenitors.
    Authors: Niwa A, Heike T, Umeda K
    PLoS ONE, 2011-07-27;6(7):e22261.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  61. Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases.
    Authors: Ye L, Chang JC, Lin C, Sun X, Yu J, Kan YW
    Proc. Natl. Acad. Sci. U.S.A., 2009-05-29;106(24):9826-30.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  62. Isolation and characterization of CD146+ multipotent mesenchymal stromal cells.
    Authors: Sorrentino A, Ferracin M, Castelli G, Biffoni M, Tomaselli G, Baiocchi M, Fatica A, Negrini M, Peschle C, Valtieri M
    Exp. Hematol., 2008-05-27;36(8):1035-46.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  63. Refreezing of cord blood hematopoietic stem cells for allogenic transplantation: in vitro and in vivo validation of a clinical phase I/II protocol in European and Italian Good Manufacturing Practice conditions.
    Authors: Gunetti M, Ferrero I, Rustichelli D, Berger M, Gammaitoni L, Timeus F, Piacibello W, Aglietta M, Fagioli F
    Exp. Hematol., 2008-02-01;36(2):235-43.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  64. Thrombopoietin enhances generation of CD34+ cells from human embryonic stem cells.
    Authors: Srivastava AS, Nedelcu E, Esmaeli-Azad B, Mishra R, Carrier E
    Stem Cells, 2007-03-22;25(6):1456-61.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  65. Long-lasting in vitro hematopoiesis derived from primate embryonic stem cells.
    Authors: Hiroyama T, Miharada K, Aoki N, Fujioka T, Sudo K, Danjo I, Nagasawa T, Nakamura Y
    Exp. Hematol., 2006-06-01;34(6):760-9.
    Species: Primate - Macaca fascicularis (Crab-eating Monkey or Cynomolgus Macaque)
    Sample Types: Whole Cells
    Applications: Bioassay
  66. Tal1/Scl gene transduction using a lentiviral vector stimulates highly efficient hematopoietic cell differentiation from common marmoset (Callithrix jacchus) embryonic stem cells.
    Authors: Kurita R, Sasaki E, Yokoo T, Hiroyama T, Takasugi K, Imoto H, Izawa K, Dong Y, Hashiguchi T, Soda Y, Maeda T, Suehiro Y, Tanioka Y, Nakazaki Y, Tani K
    Stem Cells, 2006-05-25;24(9):2014-22.
    Species: Primate - Callitrix jacchus (Common Marmoset)
    Sample Types: Whole Cells
    Applications: Bioassay
  67. Effects of busulfan dose escalation on engraftment of infant rhesus monkey hematopoietic stem cells after gene marking by a lentiviral vector.
    Authors: Kahl CA, Tarantal AF, Lee CI, Jimenez DF, Choi C, Pepper K, Petersen D, Fletcher MD, Leapley AC, Fisher J, Burns TS, Ultsch MN, Dorey FJ, Kohn DB
    Exp. Hematol., 2006-03-01;34(3):369-81.
    Species: Primate - Macaca mulatta (Rhesus Macaque)
    Sample Types: Whole Cells
    Applications: Bioassay
  68. The reduction of in vitro radiation-induced Fas-related apoptosis in CD34+ progenitor cells by SCF, FLT-3 ligand, TPO, and IL-3 in combination resulted in CD34+ cell proliferation and differentiation.
    Authors: Drouet M, 49153, Mathieu J, Grenier N, Multon E, Sotto JJ, Herodin F
    Circulating NOD1 Activators and Hematopoietic NOD1 Contribute to Metabolic Inflammation and Insulin Resistance, 1999-01-01;17(5):273-85.
    Species: Primate - Papio anubis (Olive Baboon)
    Sample Types: Whole Cells
    Applications: Bioassay

FAQs

  1. What are the differences between Recombinant Human Flt-3 Ligand/FLT3L Protein (Catalog # 308-FK), Recombinant Human Flt-3 Ligand/FLT3L Protein (Catalog # 308-FKN), and Recombinant Human Flt-3 Ligand/FLT3L Protein, CF (Catalog # 308-FKE)?

    • Recombinant Human Flt-3 Ligand/FLT3L Protein (Catalog # 308-FK) and Recombinant Human Flt-3 Ligand/FLT3L Protein (Catalog # 308-FKN) share the same protein sequence, Thr27-Pro185 of Accession # AAA17999.1 but Catalog # 308-FK was expressed in Sf 21 baculovirus cells and Catalog # 308-FKN was produced in mammalian NS0 cells. Both of these proteins are glycosylated and available bottled with BSA or without BSA (Carrier-Free).  Recombinant Human Flt-3 Ligand/FLT3L Protein, CF (Catalog # 308-FKE) was produced in an E. Coli expression system and has a sequence of (Thr27-Ala181, Accession # P49771.1), but may also contain an N-terminal Methionine followed by the expected sequence. In addition to being slightly shorter compared to 308-FKN and 308-FK, there is one difference in amino acid at position 72. Accession # AAA17999.1 has an Alanine at position 72, while Accession # P49771.1 has a Glycine in that position. All three versions of Recombinant Human Flt-3 Ligand/FLT3L proteins are routinely tested and have the same activity range in our QC testing assay: Measured in a cell proliferation assay using BaF3 mouse pro‑B cells transfected with mouse Flt-3. The ED50 for this effect is 0.2-1 ng/mL.  R&D Systems also offers two GMP versions of this protein, an E. coli-derived animal-free version, Recombinant Human Flt-3 Ligand/FLT3L GMP Protein, CF (Catalog # 308E-GMP), and an Sf-21 baculovirus-derived version, Recombinant Human Flt-3 Ligand GMP Protein, CF (Catalog # 308-GMP). For information on the GMP proteins, we recommend consulting the product-specific pages for each protein. To determine which of these three proteins is most suitable for an application, we would recommend checking the Citations tab on the product-specific page.

View all Proteins and Enzyme FAQs

Animal-Free Recombinant Proteins

GMP Recombinant Proteins

Reviews for Recombinant Human Flt-3 Ligand/FLT3L Protein

Average Rating: 5 (Based on 3 Reviews)

5 Star
100%
4 Star
0%
3 Star
0%
2 Star
0%
1 Star
0%

Have you used Recombinant Human Flt-3 Ligand/FLT3L Protein?

Submit a review and receive an Amazon gift card.

$25/€18/£15/$25CAN/¥75 Yuan/¥2500 Yen for a review with an image

$10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen for a review without an image

Submit a Review

Filter by:


Recombinant Human Flt-3 Ligand/FLT3L Protein
By Anonymous on 10/13/2020
Application: Stem/Immune cell maintenance or differentiation

Recombinant Human Flt-3 Ligand/FLT3L Protein
By Zhenping Wang on 09/30/2020
Application: Mast cells differentiation.

Recombinant Human Flt-3 Ligand/FLT3L Protein
By Anonymous on 03/28/2018
Application: Stem/Immune cell maintenance or differentiation